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Abstract 

Let G = (V(G), E(G)) be a connected graph where V(G) is a finite nonempty set called 

vertex-set of G, and E(G) is a set of unordered pairs {u, v} of distinct elements from V(G) called 

the edge-set of G. If G is a connected acyclic graph or a connected graph with no cycles, then it is 

called a tree graph. A binary tree Tl with l levels is complete if all levels except possibly the last 

are completely full, and the last level has all its nodes to the left side. If we form a path on each 

level of a full and complete binary tree, then the graph is now called a full and complete binary 

planar graph, and it is denoted as Bn, where n is the level of the graph. This paper introduced a 

new planar graph which is derived from binary tree graphs. In addition, a combinatorial formula 

for counting its vertices, faces, and edges that depends on the level of the graph was developed. 
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INTRODUCTION 

Graph theory has undergone tremendous 

development through mathematical research 

(Chartrand & Zhang, 2012; Guichard, 2018). It 

is a growing branch of discrete mathematics that 

deals with graphs and their properties. To date, 

various graph theorists contributed to the 

development of such a field. Some of them are 

Casinillo (2018), Casinillo et al. (2017), Kumar 

et al. (2016), and Varkey & Thomas (2017). 

In this study, we need some definitions of 

terms and types of graphs. A connected graph 

𝐺 is a pair of set 𝑉(𝐺) and 𝐸(𝐺), where 𝑉(𝐺) 

is called the vertex-set of graph 𝐺 and 𝐸(𝐺) is a 

set of unordered pair {𝑢, 𝑣}, or simply 𝑢𝑣, of 

distinct elements from 𝐸(𝐺) called the edge-set 

of 𝐺, where 𝑢, 𝑣 ∈ 𝑉(𝐺). The elements of 𝑉(𝐺) 

are called vertices, and the cardinality of 𝑉(𝐺) 

is the order of graph 𝐺, and it is denoted as 

|𝑉(𝐺)|. The elements of 𝐸(𝐺) are called edges, 

and the cardinality |𝐸(𝐺)| of 𝐸(𝐺) is the size of 

𝐺. If |𝑉(𝐺)| = 1, then 𝐺 is called a trivial graph 

(Chartrand & Zhang, 2012; Ore, 1962). A walk 

is a sequence 𝑢1, 𝑢2, … , 𝑢𝑛 of graph 𝐺 vertices 

such that {𝑢𝑖, 𝑢𝑖+1} ∈ 𝐸(𝐺) for each 𝑖 =

 1, 2, … , 𝑛. Vertices 𝑢1 and 𝑢𝑛 are the endpoints 

of the walk, while the vertices 𝑢2, 𝑢3, … , 𝑢𝑛−1 

are internal vertices of the walk. The length of  

the walk is the number of edges on the walk, 

i.e., the walk 𝑢1, 𝑢2, … , 𝑢𝑛 has length 𝑛 − 1. A 

path is a walk that does not repeat edges and 

does not end where it starts, i.e., 𝑢1 → 𝑢2 →

 … →  𝑢𝑛, 𝑢1 ≠ 𝑢𝑛. A path of order 𝑛 and 

length 𝑛 − 1 is denoted by 𝑃𝑛 where 𝑛 ≥ 1 

(Casinillo, 2018).  A cycle is a walk that does 

not repeat edges and does end where it starts, 

i.e., 𝑢1 → 𝑢2 →  … →  𝑢𝑛 → 𝑢1. A cycle graph 

of order 𝑛 and length 𝑛 is denoted by 𝐶𝑛 where 

𝑛 ≥ 3. For other graph theory concepts, readers 

may refer to the following references (Bollobás, 

1998; Casinillo, 2020a; Casinillo et al., 2017; 

Chartrand & Zhang, 2012; Ore, 1962).  

A tree is a connected acyclic graph or a 

connected graph with no cycles. A tree with 𝑛 

vertices has 𝑛 − 1 edges (Kumar et al., 2016). 

The edges of a tree are known as branches, and 

the elements of a tree are called nodes or 

vertices. The nodes without child nodes are 

called leaf nodes. A binary tree 𝑇𝑙 with 𝑙 levels 

is full if each vertex is either a leaf or possesses 

exactly two child vertices. A binary tree 𝑇𝑙 with 

𝑙 levels is complete if all levels except possibly 
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the last are completely full, and the last level has 

all its nodes to the left side (Kumar et al., 2016; 

Varkey & Thomas, 2017). Figure 1 shows a full 

and complete binary tree of level 4. 

 
Figure 1. Graph 𝑇4 

 

If we form a path on each level of a full 

and complete binary tree, then the graph is now 

called a full and complete binary planar graph, 

and it is denoted as 𝐵𝑛 , where 𝑛 is the level of 

the graph. See Figure 2 below.  

 
Figure 2. Graph 𝐵4 

 

In this paper, our effort focused on 

introducing a new planar graph derived from 

full and complete binary tree graphs. Moreover, 

the construction of combinatorial formula on 

counting its vertices, faces, and edges that 

depend on the level of the graph was developed.  

 

METHOD 

 The methodology of this research paper is 

exploratory in nature which is based on the 

research conducted by Casinillo (2020b). This 

study developed a combinatorial (counting) 

formulae that determine the number of vertices, 

edges, and faces of a newly introduced planar 

graph 𝐺 = 𝐵𝑛. These formulae were function of 

positive integer 𝑛, where 𝑛 is the said graph 

level. Furthermore, the constructed formulae 

were characterized as 𝑛 goes sufficiently large 

and discussed some important results. 

RESULTS AND DISCUSSION 

 We use the following lemma below to 

construct the combinatorial formula for 

counting vertices, edges, and faces of full and 

complete binary planar graph 𝐵𝑛, where 𝑛 is a 

positive integer. 

Lemma 1. (Leithold, 1996) Let 𝑛 and 𝑟 be 

positive integers. Then, the following holds: 

1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛−1 =
1 − 𝑟𝑛

1 − 𝑟
, 𝑖𝑓 𝑟 ≠ 1. 

 

 The following theorem is a direct result 

by the definition of graph 𝐵𝑛 and Lemma 1. 

This theorem presents the counting formula for 

the order of graph 𝐺 = 𝐵𝑛, where 𝑛 is a positive 

integer. 

 

Theorem 2: Let 𝐺 = 𝐵𝑛, where 𝑛 is a positive 

integer. Then, |𝑉(𝐺)| = 2𝑛 − 1. 

 

Proof. Suppose that 𝐺 = 𝐵𝑛 where 𝑛 is the level 

of the graph. Since every 𝑛𝑡ℎ level of the graph 

𝐺 contains a path of order 2𝑛−1, that is, 𝑃2𝑛−1, 

then we have a series of the order of paths in 𝐺 

as follows: 

1 + 2 + ⋯ + 2𝑛−1 = ∑ 2𝑖−1.

𝑛

𝑖=1

 

By Lemma 1, it implies that the order of graph 

𝐺 is given by 

|𝑉(𝐺)| = ∑ 2𝑖−1

𝑛

𝑖=1

=
1 − 2𝑛

1 − 2
= 2𝑛 − 1. 

This result completes the proof.         

 

Corollary 3 below is a direct consequence of 

Theorem 2, which determines the value of 𝑛 

given the order of graph 𝐺 = 𝐵𝑛. 

 

Corollary 3. Let 𝐺 = 𝐵𝑛, where 𝑛 is a positive 

integer. Then, 𝑛 = 𝑙𝑜𝑔2[𝑉(𝐺) + 1]. 

 

Proof. Obvious from Theorem 2.                    

 

Next, Theorem 4 presents the formula of 

counting the inside faces of graph 𝐺 = 𝐵𝑛 for 

𝑛 > 1, and this is denoted as 𝐹(𝐺), while 𝐹𝑜(𝐺) 

denotes the outside face of graph 𝐺. Note that 
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for any graph 𝐺 = 𝐵𝑛, we have 𝐹𝑜(𝐺) = 1 for 

all values of positive integer 𝑛. 

 

Theorem 4. Let 𝐺 = 𝐵𝑛 where 𝑛 is a positive 

integer. If 𝑛 > 1, then |𝐹(𝐺)| = 2𝑛 − 𝑛 − 1. 

 

Proof. We suppose that 𝐺 = 𝐵𝑛 where 𝑛 is a 

positive integer greater than 1. Now, for every 

𝑛𝑡ℎ level of graph 𝐺, it contains a 2𝑛−1 − 1 

number of faces. Hence, we obtained the 

following series for the number of faces for 

each 𝑛𝑡ℎ level: 

1 + 3 + 7 + ⋯ + 2𝑛−1 − 1 = ∑ 2𝑖−1 − 1.

𝑛

𝑖=2

 

Applying algebra and the concept of Lemma 1 

will directly follow that the number of inside 

faces of graph 𝐺 is given by 

|𝐹(𝐺)| = −𝑛 + ∑ 2𝑖

𝑛−1

𝑖=0

 

 = −𝑛 +
1 − 2𝑛

1 − 2
 

 = 2𝑛 − 𝑛 − 1. 

This result completes the proof.        

 

We need the following theorem from calculus 

below for our next results. 

 

Theorem 5. (L’ H𝒐pital’s Rule) (Leithold, 

1996). Let 𝑓(𝑥) and 𝑔(𝑥) be differentiable 

functions on an open interval 𝐼, except possibly 

at the number 𝑎 in 𝐼. Suppose that for all 𝑥 ≠ 𝑎 

in 𝐼 and 𝑔(𝑥) ≠ 0. If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
 results in the 

indeterminate form, then 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
. 

provided the latter limit exists or infinite. 

 

The next remark is a direct consequence of 

Theorem 2, 4, and 5. 

 

Remark 6. Let 𝐺 = 𝐵𝑛. If 𝑛 is sufficiently large, 

then |𝑉(𝐺)| = |𝐹(𝐺)|. 

 

Proof. First, we assume that 𝑛 is a continuous 

number. Then, take the limit of the ratio of 

|𝑉(𝐺)| and |𝐹(𝐺)| as 𝑛 approaches infinity, that 

is,  

lim
𝑛→∞

|𝑉(𝐺)|

|𝐹(𝐺)|
= lim

𝑛→∞

2𝑛 − 1

2𝑛 − 𝑛 − 1
. 

By Theorem 5, we obtained the following 

result, 

lim
𝑛→∞

|𝑉(𝐺)|

|𝐹(𝐺)|
= 1. 

Hence, it follows that |𝑉(𝐺)| = |𝐹(𝐺)| for 

large values of 𝑛. It completes the proof.  

 

It is worth noting that there are two kinds of the 

inside face of graph 𝐺 = 𝐵𝑛. Those are the cycle 

graphs of orders 3 and 4, i.e., 𝐶3 and 𝐶4, 

respectively. The number of 𝐶3 and 𝐶4 in graph 

𝐺 = 𝐵𝑛 are denoted as 𝐹3(𝐺) and 𝐹4(𝐺), 

respectively.  

 

The following corollary and remark are the 

direct consequence of Theorem 4 and from the 

definition of two kinds of the inside face of 

graph 𝐺 = 𝐵𝑛. 

 

Corollary 7. Let 𝐺 = 𝐵𝑛 where 𝑛 is a positive 

integer. If 𝑛 > 1, then the following holds true: 

i. |𝐹3(𝐺)| = 2𝑛−1 − 1; and 

ii. |𝐹4(𝐺)| = 2𝑛−1 − 𝑛. 

Proof. To prove this corollary, we consider the 

two following cases: 

Case 1. Suppose that if 𝐺 = 𝐵𝑛, then every 

vertex in (𝑛 − 1)𝑡ℎ possesses two child vertices 

for 𝑛 > 1. Since 𝐺 forms a path for every 𝑛𝑡ℎ 

level where 𝑛 > 1, it implies that in every 𝑛𝑡ℎ 

level where 𝑛 > 1, graph 𝐺 has 2𝑛−1 triangular 

faces. So, it implies that graph 𝐺 has the series 

of faces as follows:  

1 + 2 + 22 + ⋯ + 2𝑛−2 = ∑ 2𝑖−2.

𝑛

𝑖=2

 

Moreover, by Lemma 1, we obtained the 

following number of the triangular face: 

|𝐹3(𝐺)| = ∑ 2𝑖−1

𝑛−1

𝑖=1

=
1 − 2𝑛−1

1 − 2
= 2𝑛−1 − 1. 

Case 2. Since |𝐹(𝐺)| = |𝐹3(𝐺)| + |𝐹4(𝐺)|, 

then |𝐹4(𝐺)| = |𝐹(𝐺)| − |𝐹3(𝐺)|. Clearly, it 
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follows that |𝐹4(𝐺)| = 2𝑛−1 − 𝑛. This 

completes the proof.         

 

The degree of a face of a planar graph denoted 

by 𝑑(𝐹) is the number of edges bounding the 

face 𝐹. The following remark counts the degree 

of the outside face of any graph 𝐺 = 𝐵𝑛. 

 

Remark 8. Let 𝐺 = 𝐵𝑛 where 𝑛 > 1. Then, 

𝑑(𝐹𝑜(𝐺)) = 2𝑛−1 + 2𝑛 − 3. 

 

Proof. The proof is obvious.        

 

The next corollary is a direct consequence of 

Theorem 4 and Corollary 7. 

 

Corollary 9. Let 𝐺 = 𝐵𝑛 where 𝑛 > 1. If 𝑛 is 

sufficiently large, then the following holds true: 

 

i. |𝐹(𝐺)|= 2|𝐹3(𝐺)|; 𝑎𝑛𝑑 

ii. |𝐹(𝐺)|= 2|𝐹4(𝐺)|. 

Proof. We assume that 𝑛 is a continuous 

number. Then, consider the following cases 

below: 

Case 1. We take the limit of the ratio of |𝐹3(𝐺)| 

and |𝐹(𝐺)| as 𝑛 approaches infinity, that is,  

lim
𝑛→∞

|𝐹3(𝐺)|

|𝐹(𝐺)|
= lim

𝑛→∞

2𝑛−1 − 1

2𝑛 − 𝑛 − 1
. 

By applying the L’ Hopital’s rule successively, 

we end up with, 

lim
𝑛→∞

|𝐹3(𝐺)|

|𝐹(𝐺)|
=

1

2
. 

Hence, it clearly follows that 

|𝐹(𝐺)|= 2|𝐹3(𝐺)|. 

 

Case 2. In the same method, we take the limit of 

the ratio of 𝐹4(𝐺) and 𝐹(𝐺) as 𝑛 approaches 

infinity, and it follows that  

lim
𝑛→∞

|𝐹4(𝐺)|

|𝐹(𝐺)|
= lim

𝑛→∞

2𝑛−1 − 𝑛

2𝑛 − 𝑛 − 1
. 

Again, applying the L’ Hopital’s rule 

successively, we have  

lim
𝑛→∞

|𝐹4(𝐺)|

|𝐹(𝐺)|
=

1

2
. 

 

 

Thus, we obtain 

|𝐹(𝐺)|= 2|𝐹4(𝐺)|. 

Furthermore, this completes the proof.         

 

However, for finite values of 𝑛, we obtained 

the following remark. 

 

Remark 10. Let 𝐺 = 𝐵𝑛 . For all values of 𝑛, 

|𝐹4(𝐺)| < |𝐹3(𝐺)|. 

 

Proof. The proof is obvious.        

 

Theorem 11. Let 𝐺 = 𝐵𝑛 where 𝑛 is a positive 

integer. If 𝑛 > 1, then |𝐸(𝐺)| = 2𝑛+1 − 𝑛 − 3. 

 

Proof. If we suppose that 𝐺 = 𝐵𝑛 where 𝑛 is a 

positive integer greater than 1, then for every 

𝑛𝑡ℎ level of the graph 𝐺, it contains 2𝑛 − 1 

edges. Thus, it follows that we obtained the 

series for the number of edges, 

3 + 7 + ⋯ + (2𝑛 − 1) = ∑ 2𝑖 − 1.

𝑛

𝑖=2

 

Applying algebra and the concept of Lemma 1, 

it clearly follows that  

|𝐸(𝐺)| = ∑ 2𝑖+1 − 1

𝑛−1

𝑖=1

           

= 4 [
1 − 2𝑛−1

1 − 2
] − (𝑛 − 1). 

Hence, |𝐸(𝐺)| = 2𝑛+1 − 𝑛 − 3.  

This completes the proof.      

 

The corollary that follows is a direct 

consequence of Theorem 2, 4, and 11. 

 

Corollary 12. Let 𝐺 = 𝐵𝑛 where 𝑛 > 1. If 𝑛 is 

sufficiently large, then the following holds true: 

 

i. |𝐸(𝐺)|= 2|𝑉(𝐺)|; 𝑎𝑛𝑑 

ii.     |𝐸(𝐺)|= 2|𝐹(𝐺)|. 

Proof. The proof is similar to the proof of 

Corollary 9.          
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Lemma 13. (Euler’s formula). If 𝐺 is a 

connected planar graph, then  

|𝑉(𝐺)| + |𝐹(𝐺)| = |𝐸(𝐺)| + 2. 

  

Because of Euler’s formula above, the 

following remark is obtained. 

 

Remark 14. Graph 𝐺 = 𝐵𝑛 is a planar graph 

that satisfies the Euler’s formula.  

 

Proof. The proof is obvious.        

  

Lemma 15. (Chartrand & Zhang, 2012) For 

any simple connected planar graph 𝐺, we have 

∑ 𝑑(

𝑖

𝐹𝑖) = 2|𝐸(𝐺)|. 

 

Considering Lemma 15, the following remark is 

a direct consequence showing that graph 𝐺 =

𝐵𝑛 is a planar graph. 

 

Remark 16. Let 𝐺 = 𝐵𝑛 where 𝑛 > 1. Then,  

𝑑(𝐹𝑜(𝐺)) + 3|𝐹3(𝐺)| + 4|𝐹4(𝐺)| = 2|𝐸(𝐺)|. 

 

Proof. The proof is obvious.                                                                                                                             

 

CONCLUSION 

This paper introduced a new planar graph 

that is based on a full and complete binary tree 

graph. A combinatorial formula was developed 

to count its vertices and found out that there are 

2𝑛 − 1 vertices, where 𝑛 is the level of the 

graph. Results showed three kinds of faces in 

graph 𝐺 = 𝐵𝑛, that is, outside face, 𝐶3 face, and 

𝐶4 face denoted as 𝐹𝑜, 𝐹3, and 𝐹4, respectively. 

The study also developed counting formulae for 

the different kinds of faces in the graph. 

Furthermore, the number of edges in graph 𝐺 =

𝐵𝑛 was also determined by developed counting 

formula that also depends on the level of the 

graph. It was also found out that the three 

parameters, such as vertices, faces, and edges of 

graph 𝐺 = 𝐵𝑛 satisfy Euler’s formula for planar 

graphs. Lastly, the paper had discussed some 

properties regarding the said three parameters 

as the level of graph 𝑛 goes sufficiently large 

using L’ H𝑜pital’s Rule in calculus. Future 

research may consider counting the domination 

number of the full and complete binary planar 

graph. Furthermore, it would be interesting if 

the graph 𝐺 = 𝐵𝑛 will be characterized using 

graph labeling concepts. 
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