Model Predator-Prey dengan Dua Predator dan Satu Prey Terinfeksi
Abstract
Di dalam penelitian ini, telah dibahas model matematika yang menunjukkan interaksi antara satu prey rentan dan prey terinfeksi dengan dua predator. Interaksi antara predator dan prey menggunakan fungsi respon Holling tipe II. Pertumbuhan predator dan prey menggunakan fungsi logistik. Dari model tersebut diperoleh delapan titik ekuilibrium. Kestabilan lokal masing-masing titik ekuilibrium dianalisis dengan metode linierisasi. Kemudian simulasi numerik menunjukan interaksi antara dua predator, prey rentan dan prey terinfeksi.
Keywords
Full Text:
PDFReferences
Alebraheem, J & Abu-Hasan, Y. (2012). Persistence of predators in a two predators-one prey model with non periodic solution. Applied Mathematical Sciences, 6(19), 943 – 956.
Edwards, C. H., & Penney, D. E. (2008). Elementary Differential Quations (Sixth Edition). New York: Pearson Education, Inc.
Kar,T.K., Ghorai. A., & Jana, S.W. (2012). Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide, fever epidemic through the use. American Journal of Theoretical Biology, 310: 187-198.
DOI: https://doi.org/10.31002/ijome.v1i1.887
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Indonesian Journal of Mathematics Education

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indexed by:
ISSN: 2654-3907 (print) | 2654-346X (online)
Jalan Kapten Suparman No.39, Magelang, Jawa Tengah, Indonesia 56116
Phone (0293) 364113 Fax. (0293) 362438
Website : http://jurnal.untidar.ac.id/index.php/ijome