# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

# Studi Komparasi Pekerjaan *Hotmix Asphalt Pavement* (HMA) dengan *Rigid Pavement* Terhadap Konsumsi Energi dan Luaran Emisi Gas CO2

Jeviana Permatasari, Muhammad Amin, Dwi Sat Agus Yuwana

Jurusan Teknik Sipil, Fakultas Teknik, Universitas Tidar Jl. Kapten Suparman No.39, Potrobangsan, Magelang Utara, Jawa Tengah, 56116

#### **INTISARI**

Konstruksi adalah salah satu sektor penting pendukung pembangunan ekonomi nasional terutama pada konstruksi perkerasan jalan *rigid pavement* dan *hotmix asphalt pavement*. Pada proses pekerjaan perkerasan jalan tentunya akan mengkonsumsi energi dan mengeluarkan polusi yang akan menambah tingkat CO<sub>2</sub> di muka bumi ini. Studi Bank Dunia (The World Bank Group 2011) yang dilakukan terhadap program pembangunan jalan di Indonesia memperkirakan bahwa program pembangunan kontruksi jalan di Indonesia pada periode 2009-2019 akan menghasilkan emisi gas CO<sub>2</sub> sebesar 29.941.737 ton, sudah selayaknya mendapat perhatian dalam upaya pengurangan emisi GRK agar target pengurangan emisi CO<sub>2</sub> sebagaimana yang sudah dicanangkan pada tahun 2020 dapat tercapai. Oleh karena itu,diperlukan suatu penelitian untuk memperkirakan jumlah konsumsi energi dan emisi CO<sub>2</sub> pada pelaksanaan perkerasan jalan tersebut.

Metode dalam penelitian ini menggunakan *Intergovernmental Panel on Climate Change* (IPCC 2006) dengan menghitung estimasi bahan bakar pada alat berat dan volume material untuk menganalisis konsumsi energi dan emisi CO<sub>2</sub> yang dikeluarkan pada pekerjaan konstruksi perkerasan jalan dengan *rigid pavement* dan *hotmix asphalt pavement*.

Hasil analisis menunjukkan bahwa pekerjaan konstruksi perkerasan dengan *rigid pavement* mengkonsumsi energi sebesar 42,9345mj/m², mengeluarkan emisi CO₂ sebesar 113,5298 ton CO₂/ m² dan biaya konstruksi Rp.863.078,50m².sedangkan perkerasan dengan *hotmix asphalt pavement* mengkonsumsi energi sebesar 104,7260 mj/ m², mengeluarkan emisi CO₂ sebesar 395,8669 ton CO₂/ m²dan biaya konstruksi Rp.743.940. Dari hasil tersebut dapat diketahui untuk pekerjaan konstruksi dengan *hotmix asphalt pavement* berkontribusi lebih besar yaitu mengkonsumsi energi 71% dan mengeluarkan emisi CO₂ sebesar 78 % dari pekerjaan konstruksi dengan *rigid pavement*. Dari segi biaya konstruksi perkerasan *rigid pavement* lebih tinggi yaitu 54% dari pekerjaan *hotmix asphalt pavement*.

**Kata Kunci**: Estimasi konsumsi energy, emisi CO<sub>2</sub>, anggaran biaya.

### **ABSTRACT**

Construction is one of the important sectors to support national economic development, especially in the construction of rigid pavement and hot mix asphalt pavement. In the process of pavement work, of course, it will consume energy and emit pollution which will increase the level of CO2 on this earth. A World Bank study (The World Bank Group 2011) conducted on road construction programs in Indonesia estimates that road construction programs in Indonesia in the 2009-2019 period will produce CO2 gas emissions of 29,941,737 tons, it should be given attention in efforts to reduce GHG emissions so that the target of reducing CO2 emissions as planned in 2020 can be achieved. Therefore, a study is needed to estimate the amount of energy consumption and CO2 emissions in the pavement implementation.

The method in this study uses the Intergovernmental Panel on Climate Change (IPCC 2006) by calculating the estimated fuel for heavy equipment and material volume to analyze energy consumption and CO2 emissions released on pavement construction work with rigid pavement and hot mix asphalt pavement.

The results of the analysis show that pavement construction work with rigid pavement consumes energy of 42.9345mj / m2, emits 113.5298 tonnes of CO2 / m2 and construction costs of

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

Rp.863.078.50m2, while pavement with hot mix asphalt pavement consumes 104 energy, 7260 mj / m2, emits 395,8669 tonnes of CO2 / m2 and a construction cost of Rp. 743,940. From these results, it can be seen that construction work with hot mix asphalt pavement has a greater contribution, namely consuming 71% of energy and emitting 78% of CO2 emissions from construction work with rigid pavement. In terms of the construction cost of rigid pavement, it is 54% higher than the hot mix asphalt pavement work.

**Keywords**: Estimated energy consumption, CO2 emissions, budge

#### 1. Pendahuluan

# 1.1 Latar Belakang

Kostruksi adalah salah satu sektor penting pendukung pembangunan ekonomi nasional. Nilai konstruksi dari tahun ketahun semakin meningkat seiring bekembangnya teknologi dan bertambahnya jumlah penduduk di dunia salah satunya konstruksi jalan aspal dan kostruksi jalan beton (Reini, 2017).

Pada proses pekerjaan perkerasan jalan tentunya menggunakan alat berat sebagai alat bantu agar pekerjaan bisa lebih efisien.Untuk menjalankan alat berat juga di butuhkan bahan bakar sebagai penggeraknya. Pada saat alat berat beroperasi tentunya akan mengeluarkan polusi yang akan menambah tingkat CO<sub>2</sub> di muka bumi ini, selain dari alat berat CO<sub>2</sub> juga bisa disebabkan dari material yang dipakai pada kostruksi perkerasan jalan (setiawati, 2015).

Studi Bank Dunia (The World Bank Group yang dilakukan terhadap program pembangunan jalan di Indonesia memperkirakan bahwa program pembangunan kontruksi jalan di pada periode 2009-2019 akan Indonesia menghasilkan emisi gas CO<sub>2</sub> sebesar 29.941.737 ton, dimana pembangunan jalan nasional sebesar 11.706.139 juta ton (39%), disusul dengan jalan desa (24%), jalan tol (20%) dan jalan provinsi (17%). Jalan nasional adalah sektor transportasi darat terbesar penyumbang terbesar emisi CO2, sudah selayaknya mendapat perhatian dalam upaya pengurangan emisi GRK agar target pengurangan emisi CO2 sebagaimana yang sudah dicanangkan pada tahun 2020 dapat tercapai (Ridwan, 2014).

#### 1.2 Rumusan Masalah

Volume pekerjaan serta penggunaan alat berat pada proses pekerjaan perkerasan jalan dengan hotmix asphalt pavement (HMA) dan rigid pavement menyebabkan tingginya konsumsi energi dan tingkat emisi gas CO<sub>2</sub> yang mengakibatkan meningkatnya penggunaan sumber daya alam yang tidak terbarukan dan global warming.

#### 1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk:

- Mengetahui biaya konstruksi pada saat proses konstruksi perkersan jalan dengan rigid pavement.
- 2. Mengetahui biaya konstruksi pada saat proses

- konstruksi perkersan jalan dengan hotmix asphalt pavement (HMA).
- 3. Mengetahui konsumsi energy pada saat proses konstruksi perkersan jalan dengan *rigid* psvement.
- 4. Mengetahui konsumsi energy pada saat proses konstruksi perkersan jalan dengan *hotmix* asphalt pavement (HMA).
- 5. Mengetahui hasil perbandingan biaya konstruksi pada pekerjaan konstruksi perkersan jalan dengan hotmix asphalt pavement (HMA) dan rigid pavement.
- 6. Mengetahui hasil perbandingan konsumsi energi dan tingkat emisi gas CO<sub>2</sub> antara perkerasan dengan *hotmix asphalt pavement* (HMA) dan *rigid pavement*.

#### 1.4 Manfaat Penelitian

Hasil Penelitian dapat dijadikan bahan evaluasi konsumsi energi dan tingkat emisi gas CO<sub>2</sub> pada proses konstruksi jalan, serta dapat dijadikan sumber acuan untuk terlaksananya konstruksi hijau.

#### 1.5 Hipotesis Penelitian

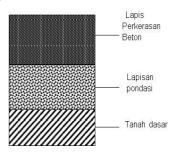
Pekerjaan konstruksi perkersan jalan mengkonsumsi energi dan menyumbang emisi CO<sub>2</sub> terbesar, terutama pada perkerasan lentur tingkat konsumsi energy dan emisi CO<sub>2</sub> lebih tinggi dibandingkan dengan perkerasan kaku (Rusdi,2017).

#### 2. Landasan Teori

#### 2.1 Jenis Perkerasan

#### 1. Perkerasan Kaku

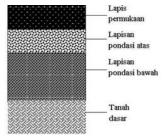
Struktur perkerasan dengan beton berbahan semen merupakan struktur yang terbuat dari atas plat beton berbahan semen kemudian disambung dalam artian (tidak menerus) baik itu tanpa tulangan maupun dengan tulangan, atau bisa juga menerus dengan tulangannya, struktur ini berada diatas lapisan pondasi bawah atau sering kita jumpai di tanah dasar, atau dengan lapisan permukaan yang sudah beraspal (Sentosa, 2012).


#### 2. Perkerasan Lentur

Konstruksi perkerasan lentur (*flexible pavement*), adalah perkerasan yang menggunakan aspal sebagai bahan pengikat dan lapisan-lapisan perkerasannya bersifat memikul dan menyebarkan beban lalu lintas ke tanah dasar (Senja,2016).

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

# 2.2 Lapis Perkerasan


#### 1. Lapis Perkerasan Kaku



Gambar 1. Lapisan Perkerasan Kaku

- Tanah dasar (subgrade), adalah bagian dari permukaan badan jalan yang dipersiapkan untuk menerima konstruksi di atasnya yaitu konstruksi perkerasan.
- b) Lapis fondasi (*subbase*). Lapis fondasi ini terletak di antara tanah dasar dan plat beton.
- c) Lapis perkerasan beton, merupakan lapisan perkerasan jalan.

### 2. Lapis Perkerasan Lentur

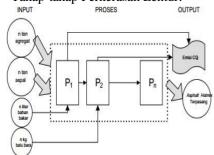


Gambar 2. Lapisan Perkerasan Lentur

- a) Lapisan Tanah Dasar (Subgrade) Lapisan tanah dasar adalah lapisan tanah yang berfungsi sebagai tempat perletakan lapis perkerasan dan mendukung konstruksi perkerasan jalan diatasnya. Lapisan tanah dasar dapat berupa tanah asli yang dipadatkan jika tanah aslinya baik, atau tanah urugan yang didatangkan dari tempat lain atau tanah yang distabilisasi dan lain lain.
- b) Lapisan Pondasi Bawah (Subbase Course) Lapisan pondasi bawah adalah lapisan perkerasan yang terletak di atas lapisan tanah dasar dan dibawah lapis pondasi atas.
- c) Lapisan pondasi atas (base course)
   Lapisan pondasi atas adalah lapisan perkerasan yang terletak di antara lapis pondasi bawah dan lapis permukaan
- d) Lapisan Permukaan (Surface Course)

Lapisan permukaan adalah lapisan yang bersentuhan langsung dengan beban roda kendaraan.

# 2.3 Tahap-Tahap pekerjaan Perkerasan Jalan




Gambar 4. Tahapan-Tahapan Pelaksanaan Perkerasan Kaku

- 1. Tahap-tahap Perkerasan Kaku
  - a) Pekerjaan Persipan
  - b) Pekerjaan Galian dan Timbunan
  - c) Pekerjaan Perkerasan Jalan
  - d) Pekerjaan Beton

Pada proses pelaksanaan konstruksi perkerasan kaku diperlukan penggunaan beberapa alat berat. Alat berat yang digunakan antara lain adalah excavator, bulldozer, vibrating roller, dump truck, truck mixer, dan lain-lain. Penggunaan alat berat terbesar biasanya adalah pada proses pekerjaan tanah dan lapis pondasi (Apsari,2015).

#### 2. Tahap-tahap Perkerasan Lentur.



Gambar 5. Tahapan-Tahapan Pelaksanaan Perkerasan Lentur

- 1. Tahap Produksi Campuran Aspal
- 2. Tahap transportasi material
- 3. Tahap pelaksanaan pekerjaan pengaspalan

# 2.4 Alat Berat pada Pekerjaan Perkerasan Kaku dan Perkerasan Lentur.

#### 1. Motor Grader

Motor Grader adalah suatu alat yang digunakan untuk keperluan perataan permukaan tanah, membuat selokan samping dan membentuk permukaan tanah yang dikehendaki produksi alat perjam:

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

$$Q = \frac{Lh \times (N \times (b - bo) \times t \times Fa \times 60}{n \times Ts}$$
2. Tandem Roller

Tandem roller merupakan suatu alat berat yang digunakan pada pekerjaan konstruksi yang bertujuan untuk memadatkan tanah atau material sehingga tercapai kepadatan yang diinginkan produksi alat perjam:

$$Q = \frac{(v \times 1000) \times (N \times (b - bo) + bo) \times t \times Fa}{n}$$

#### **Dump Truck**

Dump truck adalah suatu alat yang digunakan untuk memindahkan material pada jarak menengah sampai jarak jauh (500 meter atau lebih). produksi alat perjam:

$$Q = \frac{V \times Fa \times 60}{Ts \times Bip}$$

#### Water Tanker

Water Tanker merupakan sarana yang berfungsi untuk mendistribusi air yang pada waktu pemadatan atau pengaspalan.

Produksi alat perjam:

$$Q = \frac{V \times Fb \times Fa \times Fv1 \times 60}{Ts}$$

#### Excavator

adalah alat yang bekerjanya Excavator berputar bagian atasnya pada sumbu vertikal di antara sistem roda - rodanya, sehingga excavator yang beroda ban, pada kedudukan arah kerja attachment tidak searah dengan sumbu memanjang sistem roda - roda.

Produksi alat perjam:

$$Q = \frac{V \times Fb \times Fa \times Fv1 \times 60}{Ts}$$

#### Whell Loader

Whell Loader adalah alat yang mencampurkan dan memuat agregat ke dalam dump truck.

Produksi alat perjam:

$$Q = \frac{V \times Fb \times Fa \times 60}{Ts}$$

#### Vibrator Roller

Alat pemadatan tanah merupakan proses untuk mengurangi adanya rongga antar partikel tanah sehingga volume tanah menjadi lebih kecil.

Produksi alat perjam:

$$Q = \frac{(v \times 1000) \times (N \times (b - bo) + bo) \times t \times Fa}{n}$$

#### Jack hammer

Jack hammer beroperasi dengan menggerakkan palu internal ke atas dan ke bawah. Palu pertama-tama didorong ke bawah untuk memukul punggung dan kemudian kembali ke atas untuk mengembalikan palu ke posisi semula untuk mengulangi siklus.

Produksi alat perjam:

$$Q = \frac{Fa \times t \times 60}{bk}$$

Batching Plant (Concrete Pan Mixer)

Peralatan pembuatan campuran beton yang ditempatkan secara terpusat dan biasanya mempunyai kapasitas tinggi, sehingga cocok untuk pekerjaan-pekerjaan beton dengan volume besar, disebut Batching Plant. Produksi alat perjam:

$$Q = \frac{V \times Fa \times 60}{1000 \times Ts}$$

#### 10. Concrete Vibrato

Concrete vibrato adalah salah satu peralatan yang digunakan saat pengecoran di mana fungsinya ialah untuk pemadatan beton yang dituangkan ke dalam bekisting.

Produksi kerja concrete vibrator di peroleh dari kapasitas produksi beton mixer dan concrete mixer truck.

#### 11. Concrete Mixer Truck

Concrete Mixer Truck ini berguna untuk mengangkut ready mix concrete dari batching plant ke lokasi pengecoran.

Produksi alat perjam:

$$Q = \frac{V \times Fa \times 60}{Ts}$$

#### 12. Asphalt Distributor

Asphalt Distributor adalah alat berat yang berfungsi untuk mendistribusikan aspalt sampai dengan terampar pada lokasi pemasangan di jalan yang sedang dilakukan perkerasan. Produksi alat perjam:

$$Q = pas \times Fa \times 60$$

#### 13. Compressor

Compressor adalah alat yang digunakan untuk membersihkan pennukaan jalan dari kotoran dan debu.

Produksi keria *air compressor* di peroleh dari kapasitas produksi jack hammer dan asphalt distributor.

# 14. Pneumatic Tire Roller

Pneumatic tyre roller adalah roda -roda penggilas. Jenis ini terdiri atas roda-roda dan karet yang di pompa pneumatic susunan dari roda muka dan roda belakang selang- seling sehingga bagian yang tidak tergilas oleh roda bagian muka, maka akan digilas oleh roda bagian belakang. Produksi alat perjam:

$$Q = \frac{(v \times (N \times (b - bo) + bo) \times Fa}{n}$$

#### 15. Asphalt Sprayer

Asphalt Sprayer adalah alat yang digunakan untuk mengolah material lapis pengikat.

Produksi alat perjam:

$$Q = \frac{pa \times Fa \times 60}{1000}$$
16. Asphalt Finisher

Asphalt Finisher adalah alat yang digunakan untuk menghamparkan asphalt pada pennukaan badan jalan.

Produksi alat perjam:

$$Q = V \times b \times 60 \times Fa$$

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

#### 17. Asphalt mixing plant

Asphalt mixing plant (AMP) adalah tempat dimana campuran aspal diaduk, dipanaskan, dan dicampur.

Produksi alat perjam:

$$Q = \frac{v \times Fa}{D1 \times Fk}$$

# 2.5 Metode Estimasi Konsumsi Energi dan Emisi Gas CO2

Karena komponen GRK yang paling dominan dihasilkan pada pembakaran bahan bakar adalah gas *carbon dioksida* (CO2), maka estimasi emisi dan konsumsi energi didasarkan pada faktor emisi gas CO2, yang mengacu pada panduan *Intergovernmental Panel on Climate Change* (IPCC) tahun 2006

Metode analisis yang digunakan untuk estimasi konsumsi energi adalah dengan konversi penggunaan bahan bakar kepada satuan energi standar (Joule) . Untuk mendapatkan angka konsumsi energi menggunakan Rumus berikut :

Konsumsi Energi 
$$\left(\frac{Mj}{ton}\right)$$

= Konsumsi Bahan Bakar (ltr)

$$\times$$
 Claraficvalue  $\left(\frac{Mj}{liter}\right)$ 

Estimasi jumlah emisi  $CO_2$  per-ton produksi material perkerasan, mengacu pada persamaan panduan IPCC adalah seperti dijelaskan pada Rumus berikut:

Emisi 
$$GRK\left(\frac{Kg\ CO_2}{ton}\right)$$
= Konsumsi Energi(ltr)

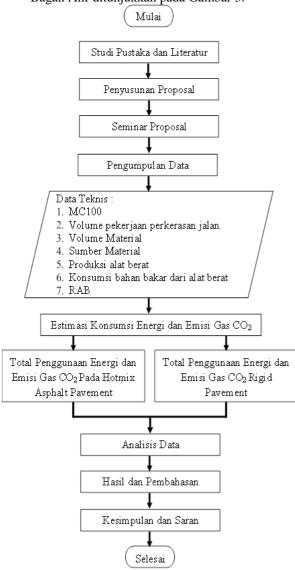
× Faktor Emisi  $\left(\frac{Kg\ CO_2}{ton}\right)$ 

# 2.6 Faktor Emisi dan Faktor Konversi Energi

Faktor Emisi adalah nilai representatif yang menunjukkan kuantitas suatu polutan yang dilepaskan ke atmosfer akibat suatu kegiatan yang terkait dengan sumber polutan.

Tabel 1. Emisi CO<sub>2</sub> yang ditimbulkan oleh proses produksi Material

| No | Material      | Faktor konversi                |
|----|---------------|--------------------------------|
| 1  | Besi tulangan | 2.4 ton CO <sub>2</sub> /ton   |
| 2  | Semen         | 1 ton CO <sub>2</sub> /ton     |
| 3  | Agregat Kasar | 1,067 ton CO <sub>2</sub> /ton |
| 4  | Agregat Halus | -                              |
| 5  | Aspal         | 11,91 kg CO2/gal               |
| 6  | Fly Ash       | -                              |


Tabel 2. Faktor Konversi Energi dan Faktor Emisi Bahan Bakar

| Jenis                              | Calorofic Value     |             | Emission<br>Factor |                    |                     |
|------------------------------------|---------------------|-------------|--------------------|--------------------|---------------------|
| Bahan<br>Bakar                     | Density<br>(kg/ltr) | (GJ/M<br>g) | (MJ/lt<br>r)       | (Kg<br>CO2/G<br>J) | (Kg<br>CO2/lt<br>r) |
| Minyak<br>Mentah<br>(Crude<br>Oil) | 0,847               | 42,30       | 35,83              | 73,30              | 2,63                |
| Solar<br>(Diesel<br>Fuel)          | 0,837               | 43,00       | 35,99              | 74,10              | 2,67                |
| Batubara<br>(Bitumino<br>us Coal)  |                     | 25,80       |                    | 94,60              |                     |

# 3. Metodelogi Penelitian

# 3.1 Bagan Alir Penelitian

Bagan Alir ditunjukkan pada Gambar 3.



Gambar 3. Bagan Alir Penelitian

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

#### 3.2 Lokasi Penelitian

Penelitian ini dilakukan di Kabupaten Klaten yaitu jalan Kunto Wijoyodanu, jalan Polanharjo-Karanglo, jalan Jiwan-kayumas,jalan Mipitan-pasar Kembang, jalan Ngaran-Telukan, jalan Prawatan-Nangsri.



Gamabar 4. Lokasi Penelitian

#### 3.3 Metode Penelitian

Penelitian bertujuan untuk menghitung berapa energi yang dikonsumsi dan emisi gas rumah kaca CO<sub>2</sub> yang dihasilkan dalam konstruksi perkerasan jalan raya di jalan dengan menggunakan Intergovernmental Panel on Climate Change (IPCC)

tahun 2006. Data teknis proyek yang didapat dari konsultan dan kontraktor pelaksana.

#### 3.4 Pengumpulan Data

Pengumpulan data dasar penelitian yaitu data sekunder yang bersumber dari data MC100 dan RAB proyek konstruksi perkerasan jalan yang di dapat dari PT. Srigading Puspa Wangi dan Bina Marga Kabupaten Klaten.

#### 3.5 Pengolahan Data

- 1. Menghitung total volume material (agregat kasar, agregar halus, besi tulangan, semen, aspal).
- Menghitung total penggunaan bahan bakar dari sumber material samapai ke lokasi pekerjaan konstruksi jalan.
- 3. Menghitung volume Pekerjaan perkerasan *Rigid Pavement*.
- 4. Menghitung volume pekerjaan perkerasan *hotmix asphalt pavement.*
- 5. Menghitung kapasitas produksi alat berat.
- 6. Menghitung konsumsi bahan bakar pada setiap tahapan pekerjaan perkerasan jalan.

Hasil dari volume pekerjaan, volume material, jarak sumber material sampai ke lokasi proyek, dan total bahan bakar yang digunakan pada alat berat didapat dari data MC100 Proyek perkerasan jalan dengan hotmix asphalt pavement (HMA) dan rigid pavement.

Hasil dari kapasitas produksi alat berat didapat dari rumus kapasitas Produksi perjam dan Produksi persiklus.

7. Estimasi Konsumsi Energi dan Emisi Gas Rumah Kaca (CO<sub>2</sub>)

Melakukan perhitungan estimasi konsumsi energi dan emis gas rumah kaca (CO2) pada pekerjaan perkerasan kaku dan perkerasan lentur dengan menggunakan konversi konsumsi bahan bakar (IPCC).

#### 3.6 Alat Penelitian

Alat yang digunakan pada penelitian ini yaitu, alat tulis, rol meter, laptop, kalkulator.

#### 4. Hasil dan Pembahasan

#### 4.1 Hasil

Berdasarkan Penelitian yang dilakukan, maka diperoleh hasil penelitian berikut:

#### a. Data Masukan

Penelitian ini menggunakan data sekunder berupa data teknis proyek pembangunan di Kabupaten Klaten yaitu jalan Kunto Wijoyodanu, jalan Polanharjo- Karanglo, jalan Ngaran-Telukan, jalan Jiwan-kayumas, jalan Mipitan-Pasar Kembang, dan jalan Prawatan-Nangsri, data masukan yang terdiri dari data volume pekerjaan, data sumber material, data volume material, produksi alat berat, dan total bahan bakar yang terpakai pada pelaksanan pekerjaan konstruksi perkerasan jalan di dapat dari MC100 pada setiap

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

divisi proses pekerjaan jalan perkerasan dengan rigid pavement dan hotmix asphalt pavement, yang diperoleh dari kontraktor pelaksana. Data ini

didapat dari PT. Srigading Puspa Wangi dan DPU Kabupaten Klaten.

Tabel 3. Nama Jalan dan Jenis Perkerasan

| No | Nama Jalan                       | Panjang<br>(m) | Lebar<br>(m) | Luas (m²) | Total (m²) | Jenis<br>Perkerasan        |
|----|----------------------------------|----------------|--------------|-----------|------------|----------------------------|
| 1  | Jalan Mipitan –<br>Pasar Kembang | 1.360          | 5            | 6.800     |            | Rigid Pavement             |
| 2  | Jalan Prawatan<br>– Nangsri      | 4.775          | 5            | 23.875    | 51.755     | Rigid Pavement             |
| 3  | Jalan Jiwan –<br>Kayumas         | 4.216          | 5            | 21.080    |            | Rigid Pavement             |
| 4  | Jalan Kunto<br>Wijoyodanu        | 1.731          | 5,5          | 9.520,5   |            | Hotmix Asphalt<br>Pavement |
| 5  | Jalan Ngaran –<br>Telukan        | 4.157          | 6,0          | 24.942    | 45.319,5   | Hotmix Asphalt Pavement    |
| 6  | Jalan Polanharjo-<br>Karanglo    | 1.974          | 5,5          | 10.857    |            | Hotmix Asphalt<br>Pavement |

| Material         | Volume             | Faktor<br>Konversi                | Emisi Co2<br>(Ton) |
|------------------|--------------------|-----------------------------------|--------------------|
| Agregat<br>Kasar | 2.813,51 Ton       | 1,067 Ton<br>CO <sub>2</sub> /ton | 3.002,0186         |
| Agregat<br>Halus | 1.867,01 Ton       | 0                                 | 0,0000             |
| Semen            | 1.549.934,89<br>kg | 1 ton CO <sub>2</sub> /ton        | 1.549,9348         |
| Besi<br>Tulangan | 500.271,91<br>kg   | 2,4 ton CO <sub>2</sub> /ton      | 1.200,6526         |
| Aspal            | -                  | 11,9111,91 kg<br>CO2/gal          | ı                  |
|                  | Total              | ·                                 | 5.752,61           |

### i. Emisi CO<sub>2</sub> pada Material

Perhitungan emisi CO<sup>2</sup> pada material dilakukan dengan menglikan total volume material dan faktor konversi pada setiap material sehingga didapat hasil sebagai berikut :

Tabel 4 Emisi CO<sub>2</sub> Berdasarkan Volume Material pada Pekerjaan Jalan Mipitan – Pasar Kembang Berdasarkan Bahan Bakar Alat yang Digunakan pada Pekerjaan Jalan Mipitan – Pasar Kembang

Tabel 5 Emisi CO<sub>2</sub> Berdasarkan Volume Material pada Pekerjaan Jalan Kunto Wijoyodanu

| Material      | Volume       | Faktor Konversi                | Emisi Co2<br>(Ton) |  |
|---------------|--------------|--------------------------------|--------------------|--|
| Agregat Kasar | 2.271,93 Ton | 1,067 Ton CO <sub>2</sub> /ton | 2.424,1544         |  |
| Agregat Halus | 976,539 Ton  | 0                              | 0,0000             |  |
| Semen         | -            | 1 ton CO <sub>2</sub> /ton     | -                  |  |
| Besi Tulangan | -            | 2,4 ton CO <sub>2</sub> /ton   | -                  |  |
| Aspal         | 187.321 Kg   | 11,9111,91 kg CO2/gal          | 2.230.987,3957     |  |
|               | Total        |                                |                    |  |

# ii. Konsumsi Energi dan Emisi CO2 pada Transportasi Material

Tabel 6 Konsumsi Energi dan Emisi CO<sup>2</sup> pada Transportasi Material Pekerjaan Jalan Mipitan – Pasar Kembang (PT.Srigading Puspa Wangi)

| Material      | Konsumsi<br>Bahan Bakar (liter) | Konsumsi Energi (Mj)<br>(35,99 Mj/Ltr) | Emisi Co2 (Kg Co2) (2,67 Kg<br>Co2/Ltr) |
|---------------|---------------------------------|----------------------------------------|-----------------------------------------|
| Agregat Kasar | 126,286                         | 4.545,03                               | 337,184                                 |
| Agregat Halus | 54,857                          | 1.974,30                               | 146,468                                 |
| Semen         | 12,571                          | 452,43                                 | 33,565                                  |
| Besi Tulangan | 8,000                           | 287,92                                 | 21,360                                  |
| Aspal         | -                               | -                                      | -                                       |
| ,             | Total                           | 7.259,69                               | 538,576                                 |

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

Tabel 7 Konsumsi Energi dan Emisi CO<sup>2</sup> pada Transportasi Material Pekerjaan Jalan Kunto Wijoyodanu (DPU Kabupaten Klaten)

| Material           | Konsumsi<br>Bahan<br>Bakar<br>(liter) | Konsumsi<br>Energi (Mj)<br>(35,99<br>Mj/Ltr) | Emisi Co2<br>(Kg Co2)<br>(2,67 Kg<br>Co2/Ltr) |
|--------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------|
| Agregat<br>Kasar   | 136,000                               | 4.894,64                                     | 363,120                                       |
| Agregat<br>Halus   | 83,200                                | 2.994,37                                     | 222,144                                       |
| Semen<br>dan Aspal | 11,429                                | 411,33                                       | 30,515                                        |
| Besi<br>Tulangan   | -                                     | -                                            | -                                             |
| Т                  | otal                                  | 8.300,34                                     | 615,779                                       |

# iii. Konsumsi Energi dan Emisi CO2 Alat Berat pada Setiap Pekerjaan

Tabel 8 Konsumsi Energi dan Emis CO<sub>2</sub>

| Pekerjaa<br>n | Alat Berat          | Konsumsi<br>Bahan<br>Bakar<br>(Liter) | Konsumsi<br>Energi<br>(Mj)<br>(35,99<br>Mj/Ltr) | Emisi Co2<br>(Kg Co2)<br>(2,67 Kg<br>Co2/Ltr) |
|---------------|---------------------|---------------------------------------|-------------------------------------------------|-----------------------------------------------|
|               | Jack<br>Hammer      | 0,000                                 | 0,000                                           | 0,000                                         |
| 3.1.(8)       | Compresor           | 7,229                                 | 260,169                                         | 694,650                                       |
|               | Dump<br>Truck       | 45,000                                | 1.619,550                                       | 4.324,199                                     |
|               | Excavator           | 38,747                                | 1.394,501                                       | 3.723,318                                     |
|               | Dump<br>Truck       | 437,392                               | 15.741,73<br>2                                  | 42.030,424                                    |
| 3.2.(1a)      | Motor<br>Grader     | 14,595                                | 525,264                                         | 1.402,455                                     |
|               | Vibro<br>Roller     | 9,918                                 | 356,942                                         | 953,034                                       |
|               | Water tank<br>Truck | 20,319                                | 731,273                                         | 1.952,499                                     |
|               | Excavator           | 116,210                               | 4.182,405                                       | 11.167,021                                    |
|               | Dump<br>Truck       | 574,771                               | 20.686,00                                       | 55.231,626                                    |
| 3.2.(1b)      | Motor<br>Grader     | 16,712                                | 601,482                                         | 1.605,957                                     |
|               | Vibro<br>Roller     | 11,357                                | 408,735                                         | 1.091,324                                     |
|               | Water tank<br>Truck | 23,267                                | 837,384                                         | 2.235,815                                     |
|               | Wheel<br>Loader     | 15,057                                | 541,909                                         | 1.446,897                                     |
| 5.1.(1)       | Dump<br>Truck       | 120,847                               | 4.349,268                                       | 11.612,545                                    |
|               | Motor<br>Grader     | 7,880                                 | 283,609                                         | 757,237                                       |
|               | Tandem<br>oller     | 15,043                                | 541,405                                         | 1.445,552                                     |

|          | Water                 | 19,263    | 693,291   | 1.851,086   |
|----------|-----------------------|-----------|-----------|-------------|
|          | Tanker                | 17,200    | 0,0,2,1   | 1.001,000   |
|          | Wheel                 | 657,402   | 23.659,91 | 63.171,961  |
|          | Loader                | ,         | 0         | ,           |
|          | Batching              | 1.750,678 | 63.006,89 | 168.228,39  |
|          | Plant                 |           | 1         | 8           |
| 5.3.(2)  | Truck                 | 5.659,286 | 203.677,7 | 543.819,50  |
|          | Mixer                 |           | 16        | 1           |
|          | Concrete              | 71,856    | 2.586,104 | 6.904,897   |
|          | Vibrator              |           |           |             |
|          | Water Tank            | 878,111   | 31.603,19 | 84.380,536  |
|          | Truck                 |           | 7         |             |
|          | Wheel                 | 0,474     | 17,046    | 45,513      |
|          | Loader                |           |           |             |
|          | Batching              | 1,261     | 45,394    | 121,202     |
|          | Plant                 |           |           |             |
| 5.3.(3)  | Truck                 | 0,116     | 4,158     | 11,101      |
| (- )     | Mixer                 | 0.050     | 1.0.52    | 4.07.5      |
|          | Concrete              | 0,052     | 1,863     | 4,975       |
|          | Vibrator              | 0.622     | 22.760    | 60.702      |
|          | Water Tank            | 0,633     | 22,769    | 60,793      |
|          | Truck                 | 121 004   | 4 257 925 | 11 (25 204  |
|          | Concrete<br>Pan Mixer | 121,084   | 4.337,823 | 11.635,394  |
|          | Truck                 | 247,500   | 9 007 525 | 23.783,092  |
| 7.1.(7a) | Mixer                 | 247,300   | 0.907,323 | 23.763,092  |
|          | Water Tank            | 27,470    | 988,661   | 2.639,724   |
|          | Truck                 | 27,470    | 900,001   | 2.039,724   |
|          | Concrete              | 243,154   | 8 751 097 | 23.365,430  |
|          | Mixer                 | 213,134   | 0.751,077 | 25.505, 150 |
| 7.1.(10) | Water Tank            | 54,364    | 1.956.560 | 5.224,015   |
|          | Truck                 | ,         |           |             |
|          | Total                 | Î         | 403.341,6 | 1.076.922,  |
|          |                       |           | 37        | 171         |

Tabel 9 Konsumsi Energi dan Emis CO<sub>2</sub> Berdasarkan Alat Berat yang Digunakan pada Pekerjaan Jalan Kunto Wijoyodanu

| Pekerjaa<br>n | Alat Berat | Konsumsi<br>Bahan<br>Bakar<br>(Liter) | Konsums<br>i Energi<br>(Mj)<br>(35,99<br>Mj/Ltr) | Emisi<br>CO <sub>2</sub><br>(CO <sub>2</sub> /<br>Kg) (2,67<br>Kg<br>CO <sub>2</sub> /Ltr) |
|---------------|------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|
|               | Excavator  | 302,204                               | 10.876                                           | 29.039                                                                                     |
| 3.1.(1a)      | Dump       | 2.974,3                               | ,332<br>107.048                                  | ,806<br>285.819                                                                            |
|               | Truck      | 95                                    | ,463                                             | ,397                                                                                       |
|               | Excavator  | 149,082                               | 5.365,                                           | 14.325                                                                                     |
|               |            |                                       | 467                                              | ,796                                                                                       |
|               | Dump       | 737,354                               | 26.537                                           | 70.854                                                                                     |
| 3.2.(1b)      | Truck      |                                       | ,376                                             | ,795                                                                                       |
|               | Motor      | 21,440                                | 771,                                             | 2.060,                                                                                     |
|               | Grader     |                                       | 621                                              | 228                                                                                        |
|               | Vibro      | 14,569                                | 524,                                             | 1.400,                                                                                     |
|               | Roller     |                                       | 353                                              | 022                                                                                        |

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

|          | Water tank  | 29,849  | 1.074,  | 2.868,  |
|----------|-------------|---------|---------|---------|
|          | Truck       |         | 252     | 252     |
|          | Wheel       | 0,140   | 5,0     | 13,4    |
|          | Loader      |         | 36      | 45      |
|          | Dump        | 7,709   | 277,    | 740,    |
|          | Truck       | ,       | 450     | 792     |
|          | Motor       | 0,068   | 2,4     | 6,5     |
| 3.2.(2a) | Grader      | 0,000   | 52      | 48      |
|          | Tandem      | 0,168   | 6,0     | 16,1    |
|          | Tundem      | 0,100   | 46      | 43      |
|          | Water       | 0,089   | 3,2     | 8,5     |
|          | Tanker      | 0,009   | 17      | 90      |
|          | Wheel       | 89,552  | 3.222,  | 8.605,  |
|          |             | 89,332  |         |         |
|          | Loader      | 605.227 | 982     | 362     |
|          | Batching    | 685,337 | 24.665, | 65.856, |
|          | Plant       |         | 291     | 328     |
|          | Truck       | 797,708 | 28.709, | 76.654, |
|          | Mixer       |         | 510     | 392     |
| 5.5.(1)  | Concrete    | 28,130  | 1.012,3 | 2.703,0 |
| 3.3.(1)  | Vibrator    |         | 81      | 58      |
|          | Tandem      | 35,788  | 1.287,9 | 3.438,9 |
|          | Roller      |         | 95      | 45      |
|          | Water Tank  | 114,568 | 4.123,3 | 11.009, |
|          | Truck       |         | 19      | 261     |
|          | Motor       | 46,867  | 1.686,7 | 4.503,6 |
|          | Grader      | ,       | 55      | 35      |
|          | Aspal       | 9,179   | 330,335 | 881,995 |
| (1 (2-)  | Distributor | >,2.    | 000,000 | 001,,,, |
| 6.1.(2a) | Compresor   | 4,789   | 172,349 | 460,171 |
|          | _           |         | ·       | ·       |
|          | Asphalt     | 5.123,8 | 184.408 | 492.369 |
|          | Mixing      | 68      | ,008    | ,381    |
|          | Plant       |         |         |         |
|          | Dump        | 2.103,8 | 75.716, | 202.164 |
|          | Truck       | 33      | 962     | ,288    |
| 6.3.(5a) | Asphalt     | 24,469  | 880,628 | 2.351,2 |
|          | Finisher    |         |         | 76      |
|          | Tandem      | 46,558  | 1.675,6 | 4.473,9 |
|          | Roller      |         | 25      | 20      |
|          | Pneumatic   | 5.729,2 | 206.194 | 550.539 |
|          | Tire Roller | 13      | ,384    | ,005    |
|          | Asphalt     | 5.269,5 | 189.650 | 506.366 |
|          | Mixing      | 34      | ,512    | ,867    |
|          | Plant       |         | ,       | ,       |
|          | Dump        | 2.163,6 | 77.869, | 207.911 |
|          | Truck       | 43      | 506     | ,582    |
|          | Compresor   | 1,305   | 70,853  | 189,177 |
|          |             |         | ·       | ·       |
| 6.3.(6c) | Aspalt      | 0,241   | 64,198  | 171,409 |
|          | Sprayer     | 1.060   | 1.005.7 | 2.695.2 |
|          | Asphalt     | 1,969   | 1.005,7 | 2.685,3 |
|          | Finisher    | 1.701   | 36      | 16      |
|          | Tandem      | 1,784   | 832.004 | 2.221.4 |
|          | Roller      |         | ,784    | 52,774  |
|          | Pneumatic   | 27,945  | 1.005,7 | 2.685,3 |
|          | Tire Roller |         | 36      | 16      |
|          | Total       |         | 1.788.2 | 4.774.6 |
|          | 1 Otal      |         | 49,915  | 27,273  |
|          |             |         |         |         |

Tabel 10 Total Keseluruhan Energi dan Luaran Emisi CO<sub>2</sub> Berdasarkan Alat Berat yang Digunakan Pada Pekerjaan Jalan Perkerasan Rigid Pavement

| i ada i ekcijaan                 | Tada Tekerjaan Jarah Terkerasan Kigid Tavement |                                                      |  |  |  |
|----------------------------------|------------------------------------------------|------------------------------------------------------|--|--|--|
| Nama Jalan                       | Total Konsumsi<br>Energi (Mj)                  | Total Emisi CO <sub>2</sub><br>(CO <sub>2</sub> /kg) |  |  |  |
| Jalan Mipitan –<br>Pasar Kembang | 403.341,637                                    | 1.076.922,171                                        |  |  |  |
| Jalan Prawatan –<br>Nangsri      | 879.096,90                                     | 2.347.188,72                                         |  |  |  |
| Jalan Jiwan –<br>Kayumas         | 912.179,811                                    | 2.435.520,09                                         |  |  |  |
| Total                            | 2.194.618,35                                   | 5.859.630,98                                         |  |  |  |

Tabel 11 Total Keseluruhan Energi dan Luaran Emisi CO<sub>2</sub> Berdasarkan Alat Berat yang Digunakan Pada Pekerjaan Jalan Perkerasan *Hot Mix Asphalt* Pavement

| Nama Jalan                     | Total Konsumsi<br>Energi (Mj) | Total Emisi CO <sub>2</sub><br>(CO <sub>2</sub> /kg) |
|--------------------------------|-------------------------------|------------------------------------------------------|
| Jalan Kunto<br>Wijoyodanu      | 1.788.249,92                  | 4.774.627,27                                         |
| Jalan Ngaran –<br>Telukan      | 2.055.008,46                  | 5.486.872,58                                         |
| Jalan Polanharjo -<br>Karanglo | 875.050,47                    | 2.336.384,76                                         |
| Total                          | 4.718.308,85                  | 12.597.884,61                                        |

### iv. Konsumsi Energi dan Emisi CO<sub>2</sub> Pada Perkerasan *Rigid Pavement*

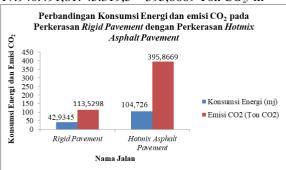
Tabel 12 Konsumsi Energi dan Emisi CO<sub>2</sub> Pada Perkerasan *Rigid Pavement* 

|                  | konsumsi     | Emisi CO <sub>2</sub>  |
|------------------|--------------|------------------------|
|                  | energi (mj)  | (CO <sub>2</sub> /Ton) |
| Berdasarkan      | 27.455,22    | 16.101,00              |
| Material         |              |                        |
| Berdasarkan      | 2.194.618,35 | 5.859.630,98           |
| Bahan Bakar Alat | 2.194.010,33 | 3.633.030,36           |
| Total            | 2.222.073,57 | 5.875.731,98           |

Konsumsi energi  $mj/m^2 = 2.222.073,57$ :  $51.755 = 42,9345 \, mj/m^2$ 

Emisi  $CO_2$  Ton  $CO_2/m^2 = 5.875.731,55$ : 51.755 = 113,5298 Ton  $CO_2/m^2$ 

# v. Konsumsi Energi dan Emisi CO<sub>2</sub> Pada Perkerasan *Hotmix Asphalt Pavement*


Tabel 13 Konsumsi Energi dan Emisi CO<sub>2</sub> Pada Perkerasan *Hotmix Asphalt Pavement* 

|             | konsumsi     | Emisi CO <sub>2</sub>  |
|-------------|--------------|------------------------|
|             | energi (mj)  | (CO <sub>2</sub> /Ton) |
| Berdasarkan | 27.821,28    | 5.342.607,20           |
| Material    |              |                        |
| Berdasarkan | 4.718.308,85 | 12.597.884,61          |
| Bahan Bakar |              |                        |
| Alat        |              |                        |
| Total       | 4.746.130,13 | 17.940.491,81          |
|             | ·            | ·                      |

Konsumsi energi  $mj/m^2 = 4.746.130,13:45.319,5 =$ 

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

 $104,7260 \text{ mj/ } \text{m}^2 \text{ Emisi } \text{CO}_2 \text{ Ton } \text{CO}_2/\text{ m}^2 = 17.940.491,81: } 45.319,5 = 395,8669 \text{ Ton } \text{CO}_2/\text{ m}^2$ 



Gambar 5 Diagram Perbandingan Konsumsi Energi dan emisi CO<sub>2</sub> pada

#### b. Pembahasan

Berdasarkan Tabel 12 dan 13 dapat diketahui total keseluruhan konsumsi energi dan emisi CO2 pada konstruksi perkerasan rigid pavement adalah 2.222.073,57 mj dan 5.875.731,98 CO<sub>2</sub>/Ton, sedangkan pada perkerasan *hotmix* asphalt pavement adalah 4.746.130,13 mj 17.940.491,81 CO<sub>2</sub>/Ton. Untuk mendapatkan konsumsi energi /m² dan emisi CO2 /m², sehingga didapatkan konsumsi energi dan emisi CO2 pada konstruksi perkerasan rigid pavement 42,9245 mj/ m² dan 113,5298 ton CO<sub>2</sub>/m² sedangka perkerasan hotmix asphalt pavement 104,7260 mj/m<sup>2</sup>dan 395,8669 ton CO<sub>2</sub>/m<sup>2</sup>. Dari hasil tersebut dapat diketahui perkerasan dengan hotmix asphalt pavement berkontribusi paling besar penggunaan konsumsi energi dan luaran emisi CO<sub>2</sub>, .

Hasil penelitian menunjukkan konstruksi perkerasan *hotmix asphalt pavement* berkontribusi besar terhadap konsumsi energi dan emisi CO<sub>2</sub> pada konstruksi jalan sedangkan biaya konstruksi tertinggi ditunjukkan pada konstruksi perkerasan dengan *rigid pavemnt*.

Dengan diketahuinya hasil tersebut di harapkan bisa menjadi acuan untuk mengurangi penggunaan energi yang berlebihan dan mengurangi emisi CO<sub>2</sub> yang di hasilkan dari proses konstruksi perkerasan jalan.

#### 5 Kesimpulan dan Saran

Berdasarkan analisis dan pembahasan yang telah dilakukan, maka penyusun dapat berikan kesimpulan dan saran sebagai berikut:

#### a. Kesimpulan

- Total energi yang dikonsumsi dan emisi CO<sub>2</sub> pada pekerjaan konstruksi perkerasan jalan dengan *rigid pavement* yaitu sebesar 42,9262 mj/ m² dan 113,5291ton Co<sub>2</sub>/m².
- 2. Total energi yang dikonsumsi dan emisi  $CO_2$  pada pekerjaan konstruksi perkerasan jalan

- dengan *hotmix asphalt pavement* yaitu sebesar 104,5617mj/ m² dan 395,7516 ton Co<sub>2</sub>/m².
- 3. Hasil perbandingan biaya konstruksi menunjukkan bahwa biaya konstruksi pada perkerasan *rigid pavement* lebih tinggi di banding dengan perkerasan *hotmix asphalt pavement*. perkerasan *asphalt pavement* lebih hemat sebesar Rp.119.137,66 /m².
- 4. Hasil perbandingan konsumsi energy dan emisi gas rumah kaca (CO<sub>2</sub>) pada pekerjaan konstruksi perkerasan jalan dengan *hotmix* asphalt pavement berkontribusi lebih besar di banding dengan konstruksi perkerasan jalan dengan *rigid pavement*.

#### b. Saran

- Pada proses konstruksi perkerasan jalan dimana emisi CO<sup>2</sup> secara dominan dihasilkan oleh alat berat khususnya pada pekerjaan hotmix asphalt pavement diperlukan penggunaan alat berat yang mengkonsumsi bahan bakar lebih efisien agar emisi CO<sup>2</sup> yang dikeuarkan lebih sedikit.
- Diperlukan peraturan perundangan yang membahas emisi CO<sup>2</sup> pada pekerjaan konstruksi di Indonesia.

#### DAFTAR PUSTAKA

- Fadholah, R., Setyawan, A., Suryoto, 2017, Konsumsi Energi dan Emisi Gas Rumah Kaca (CO2) Pada Proses Pelaksanaan Pekerjaan Perkerasan Jalan, Jurnal Matriks Teknik Sipil, Jurusan Teknik Sipil, Universitas Sebelas Maret.
- Marpaung, R., 2014, Perbandingan Emisi Co2 Menggunakan Beton dan Aspal (Studi Kasus Rekonstruksi Jalan Nasional Proinsi Riau),Jurnal Sosek Pekerjaan Umum, 6(3): 140-221.
- Mulyana, A., Wirahadikusumah, R.D., 2017, Analisis Konsumsi Energi dan Emisi Gas Rumah Kaca pada Tahap Konstruksi Studi Kasus : Konstruksi Jalan Cisumdawu, JurnalTeoretis dan Terapan Bidang Rekayasa Sipil, 24(3), Jurnal Teknik Sipil ITB.
- Peng, B., Cai, C., Yin, G., Li, W., Zhan, Y., 2015, Evaluation system for CO2emission of hotasphalt mixture, Journal Of Traffic and Transportation Engineering, 2(2): 116-124.
- Purboyo, W., Maha, I., 2019, Reduksi Emisi Gas Rumah Kaca Campuran Aspal Industri Konstruksi Jalan, 2(1), Universitas Trisakti.
- Setiawati, A., Prasetyo, S.C.A., Hatmoko, J.U.D., Hidayat, A., 2015, Kuantifikasi Emisi Gas Co2 Ekuivalen Pada Konstruksi Jalan

# Jurnal Rekayasa Infrastruktur Sipil, v.03, n.1, p. 10-21 Juli 2022

Perkerasan Kaku, Jurnal Karya Teknik Sipil, 4(1): 83-92, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Diponegoro. Wirahadikusumah, R.D., Sahana, H.P., 2012, Estimasi Konsumsi Energi dan Emisi Gas Rumah Kaca pada Pekerjaan Pengaspalan Jalan, Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil, 19(1).