Title:


EVALUASI AKURASI DIMENSI PADA OBJEK HASIL 3D PRINTING


Author:


Mail Deni Andriyansyah(1*)
Mail Sriyanto Sriyanto(2)
Mail Agus Jamaldi(3)
Mail Ikhwan Taufik(4)

(1) Program Studi Teknik Mesin, Akademi Teknologi Warga Surakarta, Surakarta, Indonesia, Indonesia
(2) Program Studi Teknik Mesin, Akademi Teknologi Warga Surakarta, Surakarta, Indonesia, Indonesia
(3) Program Studi Teknik Mesin, Akademi Teknologi Warga Surakarta, Surakarta, Indonesia, Indonesia
(4) Jurusan Teknik Mesin, Fakultas Teknik, Universitas Tidar, Indonesia
(*) Corresponding Author
10.31002/jom.v5i1.3942| Abstract views : 0 | PDF views : 0

Abstract


ABSTRAK

Fused Deposition Method (FDM) merupakan salah satu metode 3D printing yang paling populer digunakan. Teknologi FDM menawarkan proses manufaktur yang relatif lebih cepat dan murah bila dibandingkan dengan CNC atau injection moulding. Pada FDM, filament diumpankan ke dalam ekstruder yang dipanaskan pada temperatur tertentu kemudian didorong keluar melalui sebuah nozzle untuk menghasilkan lapisan-lapisan objek. Hingga saat ini, banyak komunitas yang menghasilkan mesin-mesin 3D printer skala kecil karena proyek-proyek teknologi 3D printing bersifat open-source. Masing-masing komunitas memiliki standar tersendiri dalam membuat mesin 3D printer sehingga salah satu masalah yang timbul dari aktifitas ini adalah akurasi objek hasil 3D printing yang kurang seragam. Penyimpangan geometri akan mempengaruhi proses desain dan produksi objek-objek hasil 3D printing. Hal ini terutama dalam pembuatan objek-objek yang memerlukan proses pemasangan/perakitan. Artikel ini bertujuan untuk mengetahui penyimpangan geometri objek hasil 3D printing yang dihasilkan dari mesin 3D printer FDM DIY. Pembuatan objek menggunakan 3D printing DIY mengalami deviasi pada dimensi geometri dan posisi. Deviasi geometri bervariasi dari -0,08 mm hingga +0,14 mm. Sedangkan deviasi posisi berada di rentang -0,08 mm hingga +0,12 mm. Berdasarkan data deviasi yang dihasilkan dari perbandingan di atas, maka pembuatan objek 3D printing dapat disesuaikan dengan simpangan masing-masing. Hal ini menjadi penting untuk mendapatkan objek dengan akurasi yang maksimal sehingga proses perakitan komponen dapat dilakukan dengan mudah dan sesuai dengan peruntukannya.

Kata kunci: FDM, akurasi, poros, lubang

 

ABSTRACT

The Fused Deposition Method (FDM) is one of the most popular 3D printing methods used. FDM technology offers a manufacturing process that is relatively faster and cheaper when compared to CNC or injection molding. In FDM, the filament is fed into an extruder which is heated to a certain temperature and then pushed out through a nozzle to produce layers of objects. Until now, many communities have produced small-scale 3D printer machines because 3D printing technology projects are open-source. Each community has its own standard in making 3D printer machines so that one of the problems that arise from this activity is the accuracy of the objects resulting from 3D printing which is less uniform. Geometry deviations will affect the design and production processes of 3D printed objects. This is especially true in the creation of objects that require an assembly / assembly process. This article aims to determine the irregularities in the 3D printed object's geometry resulting from the FDM DIY 3D printer machine. Making objects using DIY 3D printing experiences a deviation in the dimensions of the geometry and position. The geometry deviation varies from -0.08 mm to +0.14 mm. While the position deviation is in the range of -0.08 mm to +0.12 mm. Based on the deviation data generated from the above comparisons, the creation of 3D printing objects can be adjusted according to the respective deviation. It is important to obtain objects with maximum accuracy so that the component assembly process can be carried out easily and according to its purpose.

Keyword: FDM, accuration, pivot, hole


Full Text:

PDF

References


. H.I. Medellin-Castillo, J. Zaragoza-Siqueiros, “Design and Manufacturing Strategies for Fused Deposition Modelling in Additive Manufacturing: A Review,” Chin J. Mech. Eng., vol. 32, December 2019.

. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, “Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges,” Composites Part B, vol. 143, pp. 172-196, February 2018.

. Taufik, I., Budiono, H. S., Herianto, H. and Andriyansyah, D. (2020) “PENGARUH PRINTING SPEED TERHADAP TINGKAT KEKASARAN PERMUKAAN HASIL ADDITIVE MANUFACTURING DENGAN POLYLACTIC ACID FILAMENT”, Journal of Mechanical Engineering (JOM), 4(2), pp. 15 - 20. Available at: https://jurnal.untidar.ac.id/index.php/mechanical/article/view/3412.

. Sells, E., Bailard, S., Smith, Z., Bowyer, A., Olliver, V., 2009. RepRap: The Replicating Rapid Prototyper – maximizing customizability by breeding the means of production. In F. T. Pillar & M. M. Tseng (Eds.), Handbook of Research in Mass

Customization and Personalization, Strategies and Concepts. New Jersey: World Scientific, 1(1): 568-580.

. R. Ippolito, L. Iuliano, A. Gatto, A benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish, CIRP Ann. 44 (1)

(1995) 157–160.

. M. Mahesh, Y.S. Wong, J.Y.H. Fuh, H.T. Loh, Benchmarking for comparative evaluation of RP systems and processes, Rapid Prototyp. J. 10 (2) (2004)

–135.

. C.K. Chua, K.F. Leong, C.S. Lim, Rapid Prototyping: Principles and Applications,

World Scientific, River Edge, 2010




DOI: http://dx.doi.org/10.31002/jom.v5i1.3942

Article Metrics

Abstract view : 0 times
PDF - 0 times

Cited By

Refbacks

  • There are currently no refbacks.