RANCANG BANGUN MESIN LAS TIG SEMI OTOMATIS BERBASIS ARDUINO UNO
Abstract
ABSTRAK
Mesin las TIG semi otomatis berbasis Arduino Uno merupakan alat yang dirancang untuk mengontrol parameter kecepatan pengelasan yang sesuai dengan pekerjaan yang akan dilakukan. Proses pembuatan alat ini meliputi perancangan alat dan proses fabrikasi, wiring diagram, dan desain Arduino Uno, serta proses uji coba pengelasan. Pengujian alat pengelasan TIG dilakukan pada plat baja SS400 dengan ukuran 18 × 10 × 3 mm, arus sebesar 80 A, gas pelindung Argon, dan panjang busur las 2 mm, dengan variasi kecepatan pengelasan sebesar 4 mm/detik, 6 mm/detik dan 8 mm/detik. Hasil pengelasan yang paling baik dan sesuai didapatkan pada kecepatan pengelasan 6 mm/detik. Hal tersebut disebabkan karena kecepatan pengelasan dan besar arus yang digunakan sesuai, sehingga minim cacat lasan.
Kata kunci: mesin las, TIG, arduino, perancangan alat, kecepatan pengelasan
ABSTRACT
The semi-automatic TIG welding machine based on Arduino Uno is a tool designed to control welding speed parameters that match the work to be performed. The process of making this tool includes designing tools and fabrication processes, wiring diagrams and Arduino Uno designs, as well as welding trial processes. The TIG welding tool was tested on a steel plate SS400 with a size of 18 × 10 × 3 mm, a current of 80 A, Argon protective gas, and a welding arc length of 2 mm, with variations in welding speed of 4 mm / second, 6 mm / second and 8 mm / second. The best and most suitable welding results are obtained at a welding speed of 6 mm/second. This is because the welding speed and currently used are suitable so that there are minimal weld defects.
Keyword: welding machine, TIG, Arduino, tools design, welding speed
Full Text:
PDFReferences
E. Surojo et al., “Effect of water flow and depth on fatigue crack growth rate of underwater wet welded low carbon,” pp. 329–338, 2021.
J. Anindito, F. Paundra, and N. Muhayat, “Pengaruh aliran dan kedalaman air terhadap hasil pengelasan dan kekerasan sambungan las bawah air baja SS400,” vol. 15, no. 2, pp. 1–13, 2020.
F. Paundra, J. Anindito, N. Muhayat, Y. C. N. Saputro, and Triyono, “Effect of Water Depth and Flow Velocity on Microstructure, Tensile Strength and Hardness in Underwater Wet Welding,” IOP Conf. Ser. Mater. Sci. Eng., vol. 833, no. 1, 2020.
Linda Andewi, “Pengaruh Variasi Arus Pada Hasil Pengelasan Tig ( Tungsten Inert Gas ) Terhadap Sifat Fisis Dan Mekanis Pada Alumunium 6061,” Tugas Akhir Sarjana, Univ. Negeri Semarang, 2016.
K. Ito, T. Okuda, R. Ueji, H. Fujii, and C. Shiga, “Increase of bending fatigue resistance for tungsten inert gas welded SS400 steel plates using friction stir processing,” Mater. Des., vol. 61, pp. 275–280, 2014, ..
P. Ferro, F. Berto, F. Bonollo, and R. Montanari, “Experimental and numerical analysis of TIG-dressing applied to a steel weldment,” Procedia Struct. Integr., vol. 9, pp. 64–70, 2018.
A. V. de Queiroz, M. T. Fernandes, L. Silva, R. Demarque, C. R. Xavier, and J. A. de Castro, “Effects of an external magnetic field on the microstructural and mechanical properties of the fusion zone in tig welding,” Metals (Basel)., vol. 10, no. 6, 2020.
A. A. Kadhum and M. M. Abdulhussein, “Implementation dc motor as servomotor by using arduino and optical rotary encoder,” Mater. Today Proc., no. xxxx, pp. 4–8, 2021.
T. P. Cabré, A. S. Vela, M. T. Ribes, J. M. Blanc, J. R. Pablo, and F. C. Sancho, “Didactic platform for DC motor speed and position control in Z-plane,” ISA Trans., no. xxxx, 2021.
I. P. L. Dharma, S. Tansa, and I. Z. Nasibu, “Perancangan Alat Pengendali Pintu Air Sawah Otomatis dengan SIM800l Berbasis Mikrokontroler Arduino Uno,” J. Tek., vol. 17, no. 1, pp. 40–56, 2019.
R. Ronaldi, M. E. Unsurya, D. Teknik, and U. Elektro, “RANCANG BANGUN AUTOMATIC CAT LITTER BOX BERBASIS.”
A. Faye, Y. Balcaen, L. Lacroix, and J. Alexis, “Effects of welding parameters on the microstructure and mechanical properties of the AA6061 aluminium alloy joined by a Yb: YAG laser beam,” J. Adv. Join. Process., vol. 3, no. January, p. 100047, 2021.
DOI: https://doi.org/10.31002/jom.v5i1.3945
Refbacks
- There are currently no refbacks.