Title:


RESPON AKAR KIARA PAYUNG (Filicium decipiens (Wight & Arn.) Thwaites) PADA KONDISI CEKAMAN NATRIUM HIPOKLORIT


Author:


Mail Google Scholar Joko Widhodho(1*)
Mail Google Scholar Elly Proklamasiningsih(2)
Mail Google Scholar Pudji Widodo(3)

(1) Universitas Jenderal Soedirman, Indonesia
(2) Universitas Jenderal Soedirman, Indonesia
(3) Universitas Jenderal Soedirman, Indonesia
(*) Corresponding Author
10.31002/vigor.v7i2.6706| Abstract views : 0 | PDF views : 0

Abstract


Sodium hypochlorite (NaClO) was a chemical compound commonly used as a whitening and disinfectant agent. Kiara payung (Filicium decipiens), or the ferntree, was chosen as the object of research because easily obtained, has rapid growth, and thought to respond to alien substances' stress. The main purpose of this study was to find out the response of the ferntree plant, which is given stress from sodium hypochlorite. The research method used in this study was experimentation. The independent variable in this study was Sodium Hypochlorite Concentration (X), and the dependent variable was Sodium Hypochlorite Uptake Value (Y). Phytochemical analysis was performed using the argentometry and Atomic Absorption Spectrophotometry (AAS) techniques. Correlation analysis were performed using IBM SPSS 26. This study showed that the concentration of sodium hypochlorite has a positive effect on the uptake value of sodium hypochlorite. Limitations and suggestions to this study were to check the absorption based on soil level and examine other parts of the plant in the future study. In addition, another factors to the independent variables, such as genetics and variations in sodium hypochlorite concentration should be further explored, so that correlation analysis stands more optimal.

 

Keywords: Ferntree, Root, Sodium Hypochlorite, Stress


Full Text:

PDF

References


Andrasto, T. et al. (2021) “The effectiveness of disinfectant spraying based on drone technology,” IOP Conference Series: Earth and Environmental Science, 700(1), hal. 12012. doi: 10.1088/1755-1315/700/1/012012.

Boege, K. dan Marquis, R. J. (2005) “Facing herbivory as you grow up: the ontogeny of resistance in plants,” Trends in Ecology & Evolution, 20(8), hal. 441–448. doi: 10.1016/j.tree.2005.05.001.

Chun, W. (2017) Chloride - For a Plant’s Healthier Moments (Grower’s Secret, Inc.). Tersedia pada: https://www.growerssecret.com/blog/chloride-for-a-plants-healthier-moments.

Cockett, S. R. dan Hilton, K. A. (1961) “Dyeing of cellulosic fibres and related processes.”

Cooil, B. J., de la Fuente, R. K. dan de la Pena, R. S. (1965) “Absorption and Transport of Sodium and Potassium in Squash,” Plant physiology, 40(4), hal. 625–632. doi: 10.1104/pp.40.4.625.

Dewi, T. M. et al. (2017) “Efek Sterilisasi dan Komposisi Media Produksi Inokulan Fungi Mikoriza Arbuskula terhadap Kolonisasi Akar, Panjang Akar dan Bobot Kering Akar Sorgum,” Jurnal Agro, 4(1), hal. 24–31. doi: 10.15575/1205.

Estrela, C. et al. (2002) “Mecanismo de ação do hipoclorito de sódio,” Brazilian Dental Journal, 13(2), hal. 113–117.

Fargašová, A. (2017a) “A test battery approach for ecotoxicological evaluation of disinfectants prepared on the basis on sodium hypochlorite,” Monatsh. Chem, hal. 148.

Fargašová, A. (2017b) “Plant stress activated by chlorine from disinfectants prepared on the base of sodium hypochlorite,” Nova Biotechnologica et Chimica, 16(2), hal. 76–85. doi: 10.1515/nbec-2017-0011.

Fisher, R. A. (1992) “The Arrangement of Field Experiments,” Springer Series in Statistics. Springer New York, hal. 82–91. doi: 10.1007/978-1-4612-4380-9_8.

Fukuzaki, S. (2006) “Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes,” Biocontrol Science, 11(4), hal. 147–157. doi: 10.4265/bio.11.147.

Hasegawa, P. M. et al. (2000) “Plant cellular and molecular responses to high salinity,” Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), hal. 463–499. doi: 10.1146/annurev.arplant.51.1.463.

Keisham, M., Mukherjee, S. dan Bhatla, S. C. (2018) “Mechanisms of Sodium Transport in Plants-Progresses and Challenges,” International journal of molecular sciences, 19(3), hal. 647. doi: 10.3390/ijms19030647.

Munns, R. dan Tester, M. (2008) “Mechanisms of Salinity Tolerance,” Annual Review of Plant Biology, 59(1), hal. 651–681. doi: 10.1146/annurev.arplant.59.032607.092911.

Muslim, I. dan Inayah, K. (2018) “Penggunaan Pemutih Pakaian Komersial (BAYCLIN) sebagai Zat Etsa Alternatif pada Pencapan Etsa Kain Kapas Yang Telah Dicelup Zat Warna Reaktif Dingin (Drimarene Blue K2-RL),” in Prosiding Seminar Nasional Peran Sektor Industri dalam Percepatan dan Pemulihan Ekonomi Nasional, hal. 15–20.

Nabi, G. et al. (2020) “Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife,” Environmental research. 2020/07/09, 188, hal. 109916. doi: 10.1016/j.envres.2020.109916.

Powo Science Kew (2021) Filicium decipiens (Wight & Arn.) Thwaites. Tersedia pada: http://powo.science.kew.org/taxon/128045-1.

Prinajati, P. D. (2019) “Analisis Ruang Terbuka Hijau Terhadap Penyerapan Emisi Karbondioksida,” ENVIROSAN: Jurnal Teknik Lingkungan, 2(1), hal. 34–41.

Ramos-Rivera, J. et al. (2020) “Mechanical response of the real tree root architecture under lateral load,” Canadian Journal of Forest Research, 50(7), hal. 595–607. doi: 10.1139/cjfr-2019-0332.

Sapone, A. et al. (2016) “Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants,” Chemosphere, 144, hal. 548–554. doi: 10.1016/j.chemosphere.2015.09.022.

Suryandari, N. dan Haidarravy, S. (2020) “Pembuatan Cairan Desinfektan dan Bilik Disinfektan sebagai Upaya Pencegahan Virus Covid 19 di Mlajah Bangkalan Madura,” Jurnal Abdidas, 1(5), hal. 345–351. doi: 10.31004/abdidas.v1i5.70.

Tavakkoli, E., Rengasamy, P. dan McDonald, G. K. (2010) “High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress,” Journal of experimental botany. 2010/08/16, 61(15), hal. 4449–4459. doi: 10.1093/jxb/erq251.

Teakle, N. L. dan Tyerman, S. D. (2010) “Mechanisms of Cl-transport contributing to salt tolerance,” Plant, Cell & Environment, 33(4), hal. 566–589. doi: 10.1111/j.1365-3040.2009.02060.x.

Urben, P. G. (2007) “Preface to the Seventh Edition,” Bretherick’s Handbook of Reactive Chemical Hazards. Elsevier, hal. v–vi. doi: 10.1016/b978-0-12-372563-9.50003-3.

Vaughan, R. (2022) High Sodium Soil Effect On Plant Growth (Crop Nutrition Laboratory Services Ltd.). Tersedia pada: https://cropnuts.com/high-sodium-soil-effect-on-plant-growth/.

WateReuse Foundation (2007) Salinity Management Guide - Learn about the effects of salt on plants. Tersedia pada: https://watereuse.org/salinity-management/le/le_5.html.




DOI: http://dx.doi.org/10.31002/vigor.v7i2.6706


DOI (PDF): http://dx.doi.org/10.31002/vigor.v7i2.6706.g2668

Article Metrics

Abstract view : 0 times
PDF - 0 times

Cited By

Refbacks

  • There are currently no refbacks.


VIGOR: JURNAL ILMU PERTANIAN TROPIKA DAN SUBTROPIKA (JOURNAL OF TROPICAL AND SUBTROPICAL AGRICULTURAL SCIENCES), ISSN: 2597-6869 (online) is published by PROGRAM STUDI AGROTEKNOLOGI, FAKULTAS PERTANIAN, UNIVERSITAS TIDAR

Main Indexing :